
Bayesian phylogenetic and phylodynamic data

integration using BEAST 1.10
Marc A. Suchard,1,2,3,*,† Philippe Lemey,4,‡ Guy Baele,4,§ Daniel L. Ayres,5

Alexei J. Drummond,6,7,* and Andrew Rambaut8,*,**
1Department of Biomathematics, David Geffen School of Medicine, University of California, Los Angeles, 621
Charles E. Young Dr., South, Los Angeles, CA, 90095 USA, 2Department of Biostatistics, Fielding School of
Public Health, University of California, Los Angeles, 650 Charles E, Young Dr., South, Los Angeles, CA, 90095
USA, 3Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles,
695 Charles E. Young Dr., South, Los Angeles, CA, 90095 USA, 4Department of Microbiology and Immunology,
Rega Institute, KU Leuven, Herestraat 49, 3000 Leuven, Belgium, 5Center for Bioinformatics and
Computational Biology, University of Maryland, College Park, 125 Biomolecular Science Bldg #296, College
Park, MD 20742 USA, , 6Department of Computer Science, University of Auckland, 303/38 Princes St.,
Auckland, 1010 NZ, 7Centre for Computational Evolution, University of Auckland, 303/38 Princes St.,
Auckland, 1010 NZ and 8Institute of Evolutionary Biology, University of Edinburgh, Ashworth Laboratories,
Edinburgh, EH9 3FL UK

*Corresponding author: E-mail: msuchard@ucla.edu (M.A.S.); alexei@cs.auckland.ac.nz (A.J.D.); a.rambaut@ed.ac.uk (A.R.)
†http://orcid.org/0000-0001-9818-479X

‡http://orcid.org/0000-0003-2826-5353

§http://orcid.org/0000-0002-1915-7732

**http://orcid.org/0000-0003-4337-3707

Abstract

The Bayesian Evolutionary Analysis by Sampling Trees (BEAST) software package has become a primary tool for Bayesian
phylogenetic and phylodynamic inference from genetic sequence data. BEAST unifies molecular phylogenetic reconstruc-
tion with complex discrete and continuous trait evolution, divergence-time dating, and coalescent demographic models in
an efficient statistical inference engine using Markov chain Monte Carlo integration. A convenient, cross-platform, graphical
user interface allows the flexible construction of complex evolutionary analyses.
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1. Introduction

First released over 14 years ago, the Bayesian Evolutionary
Analysis by Sampling Trees (BEAST) software package has be-
come firmly established in a broad diversity of biological fields
from phylogenetics and paleontology, population dynamics,

ancient DNA, and the phylodynamics and molecular epidemiol-
ogy of infectious disease (Drummond et al. 2012). BEAST’s spe-
cific focus on time-scaled trees, and the evolutionary analyses
dependent on them, has given it a unique place in the toolbox
of molecular evolution and phylogenetic researchers. Since in-
ception, a strong motivation for BEAST development has been
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the rapid growth of pathogen genome sequencing as part of
public health responses to infectious diseases (Grenfell et al.
2004). In particular, fast evolving viruses can now be tracked in
near real-time (see, e.g. Quick et al. 2016) to understand their ep-
idemiology and evolutionary dynamics.

In BEAST version 1.10, we have introduced a series of advan-
ces with a particular focus on delivering accurate and informa-
tive insights for infectious disease research through the
integration of diverse data sources, including phenotypic and
epidemiological information, with molecular evolutionary
models. These advances fall into three broad themes—the inte-
gration of diverse sources of extrinsic information as covariates
of evolutionary processes, the increased flexibility and modula-
rization of the model design process with robust and accurate
model testing methods, and substantial improvements on the
speed and efficiency of the statistical inference.

2. Data integration

Many traits in phylogenetics are represented as or partitioned
into a finite number of discrete values, with geographical loca-
tion standing out as a popular example. Because BEAST is dedi-
cated to sampling time-scaled phylogenies, new developments
of discrete character mapping enable the reconstruction of
timed viral dispersal patterns while accommodating phyloge-
netic uncertainty. By extending the discrete diffusion models to
incorporate empirical data as covariates or predictors of transi-
tion rates, BEAST can simultaneously test and quantify a range
of potential predictive variables of the diffusion process (Lemey
et al. 2014). Further, realizations of the trait transition process
can also be efficiently produced, to pinpoint the nature and tim-
ing of changes in evolutionary history beyond ancestral node
state reconstruction (termed Markov jumps), or to infer the time
spent in a particular state (Markov rewards) (Minin and Suchard
2008). For molecular data, fast stochastic mapping approaches
are also employed to obtain site-specific dN=dS estimates, inte-
grating over the posterior distribution of phylogenies and an-
cestral reconstructions to quantify uncertainty on these
measures of the selective forces on individual codons (Lemey
et al. 2012).

Multivariate continuous traits are incorporated using phylo-
genetic Brownian diffusion processes, modelling the shared an-
cestral dependence across taxa and the correlations between
these variables. Such continuous models have most frequently
been applied to diffusion on a geographical landscape with the
traits representing coordinates and the phylogeny reconstruct-
ing the epidemiological process within the host population
(Lemey et al. 2010). The landscapes can also represent other
spaces, and integration of antibody binding assay data have ex-
tended ‘antigenic cartography’ (Smith et al. 2004) approaches to
model simultaneous antigenic and genetic evolution and infer
the viral trajectories in the immunological space generated by
the host population (Bedford et al. 2014).

Standard Brownian diffusion processes that assume a zero-
mean displacement along each branch may however be unreal-
istic for many evolutionary problems (including geographical
reconstruction). A recently developed relaxed directional ran-
dom walk allows the diffusion processes to take on different di-
rectional trends in different parts of the phylogeny while
preserving model identifiability (Gill et al. 2017) and opens up
these processes for a wide range of applications. BEAST 1.10
also extends multivariate phylogenetic diffusion to latent liabil-
ity model formulations in order to assess correlations between
traits of different data types, including (various combinations

of) continuous, binary and discrete traits (Cybis et al. 2015), as
demonstrated by applications to flower morphology, antibiotic
resistance, and viral epitope evolution. To infer correlations be-
tween high-dimensional traits computationally efficiently, a
novel phylogenetic factor analysis approach assumes that a
small unknown number of independent evolutionary factors
evolve along the phylogeny and generate clusters of dependent
traits at the tips (Tolkoff et al. 2018).

Further extending the data integration approach, BEAST 1.10

includes a flexible framework for incorporating time-varying
covariates of the effective population size over time. This uses
Gaussian Markov random fields to reconstruct smoothed effec-
tive population size trajectories while simultaneously estimat-
ing to what extent predictor variables (e.g. fluctuations in
climatic factors, host mobility, or vector density) may have
driven the dynamics (Gill et al. 2016). Using a similar general-
ized linear modeling (GLM) approach, classical epidemiological
time-series data such as case counts (Gill et al. 2016) can be inte-
grated with pathogen genome sequence data to provide joint in-
ference of important epidemiological parameters.

Finally, recent host-transmission models allow the integra-
tion of complete or partial knowledge of a pathogen’s transmis-
sion history, enabling the simultaneous inference of within-
host population dynamics, viral evolutionary processes, and
transmission times and bottlenecks (Vrancken et al. 2014).
Likewise, other priors enable the reconstruction of transmission
trees of infectious disease epidemics and outbreaks, while ac-
commodating phylogenetic uncertainty and employ a newly
designed set of phylogenetic tree proposals that respect node
partitions (Hall et al. 2015).

3. Flexible model design

BEAST’s companion graphical user interface program, BEAUti,
allows the user to import data, select models, choose prior dis-
tributions, and specify the settings for both Bayesian inference
and marginal likelihood estimation. Our efforts on BEAUti 1.10
have focused on allowing the user to easily link or unlink substi-
tution, clock and tree models across multiple partitions as well

as linking individual parameters to provide considerable adapt-
ability in model design. Additionally, BEAUti can also group var-
ious parameters in a hierarchical phylogenetic model prior
(Suchard et al. 2003), which allows parameters to take different
values but be linked by a common distribution, the parameters
of which can then be inferred. For example, flexible codon
model parameterizations, using hierarchical phylogenetic mod-
els (Baele et al. 2016b) and incorporating a range of potential
predictive variables for substitution behaviour (Bielejec et al.
2016a), provide insight into the tempo and mode of pathogen
evolution.

Marginal likelihood estimation to compare models using
Bayes factors has become common practice in Bayesian phylo-
genetic inference. BEAST 1.10 now features marginal likelihood
estimation (Baele et al. 2012), using path sampling (Gelman and
Meng 1998; Lartillot and Philippe 2006) and stepping-stone sam-
pling (Xie et al. 2011), as well as the recently developed general-
ized stepping-stone sampling (Fan et al. 2011; Baele et al. 2016a)
that offers increased accuracy and improved numerical stability
by employing the concept of ‘working distributions’, i.e. distri-
butions with known normalizing constants and parameterized
using samples from the posterior distribution.
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4. Performance and efficiency

Increasing model complexity and sequence availability in
modern-day analyses have stretched the computational
demands of Bayesian phylogenetic inference. To improve effi-
ciency for large-scale sequence data, BEAST 1.10 uses the
BEAGLE library (Ayres et al. 2012) that provides access to mas-
sive parallelization on a range of computing architectures.
In particular, the combination of BEAST 1.10 with BEAGLE 3.0
(Ayres et al., under review) allows multiple data partitions to be
parallelized across a single high-performance device (i.e. a
GPGPU graphics board) allowing for the utilization of the full ca-
pacity of these devices, reducing the computational overheads.
As the complexity of phylogenetic model designs increase, con-
comitant with the surge in scale of genomic data, updating only
a parameter associated with a single data partition limits the
occupation of the massively multicore devices. To address this
we have developed an adaptive multivariate transition kernel
that simultaneously updates parameters across all the parti-
tioned data, making more efficient use of available hardware
(Baele et al. 2017). Through a combination of these two

advances, BEAST 1.10 can yield a sizeable increase in effectively
independent posterior samples per unit-time over previous
software versions. For the example data described below, we
see a 5- to 25-fold improvement depending on the model pa-
rameter, using an NVIDIA Titan V.

4.1 Example

Figure 1 presents a spatiotemporal reconstruction of Ebola virus
evolution and spread during the 2013–2016 West African epi-
demic, highlighting several aspects of phylodynamic data inte-
gration. The estimates are based on a large data set of 1,610
genomes that represent over 5 per cent of the known cases
(Dudas et al. 2017). Administrative regions (n¼ 56) are included
as discrete sampling locations to estimate viral dispersal
through time while testing the contribution of a set of potential
covariates to the pattern of spread using a GLM parameteriza-
tion of phylogeographic diffusion (Lemey et al. 2014). This indi-
cates, for example, the importance of population sizes and
geographic distance to explain viral dispersal intensities.

Figure 1. Phylodynamic analysis of the 2013–2016 West African Ebola virus epidemic, encompassing simultaneous estimation of sequence and discrete (geographic)

trait data with a GLM fitted to the discrete trait model in order to establish potential predictors of viral transition between locations. Plotted are a snapshot of geo-

graphic spread using SpreaD3 (Bielejec et al. 2016b), the maximum clade credibility tree, the posterior estimates of the GLM coefficients for seven possible predictors

for Ebola virus spread (Bayes Factor support values of 3, 20, and 150 are indicated by vertical lines) and the effective population size through time, estimated by incorpo-

rating case counts.
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5. Relationship to BEAST2 and other software

Distinct from BEAST 1.10 described here, BEAST2 is an indepen-
dent project (Bouckaert et al. 2014) intended as a platform that
more readily facilitates the development of packages of models
and analyses by other researchers. Although both projects share
many of the same models and the underlying inference frame-
work, BEAST has increasingly focused on the analysis of rapidly
evolving pathogens and their evolution and epidemiology. We
affirm that BEAST will continue to be developed in parallel to
the BEAST2. While these projects share a recent common origin,
each now aims to foster complementary research domains.

A range of other software focusing on phylodynamic analy-
ses of fast-evolving pathogens has been described since the last
version of BEAST was published. Of particular note are LSD
(To et al. 2016), TreeDater (Volz and Frost 2017), and TreeTime
(Sagulenko et al. 2018). These programs use least-squares algo-
rithms (LSD) or maximum likelihood inference (TreeDater,
TreeTime) and provide rapid analysis on large data sets for a
subset of the models that BEAST provides. However, the former
program implements very limited phylodynamic models and
the latter two programs require a phylogenetic tree, inferred us-
ing other software, as input data, conditioning parameter esti-
mates on this single tree.

5.1 Availability

BEAST 1.10 is open source under the GNU lesser general public
license and available at https://beast-dev.github.io/beast-mcmc
for cross-platform compiled programs and https://github.com/
beast-dev/beast-mcmc for software development and source
code. It requires Java version 1.6 or greater. Documentation,
tutorials, and help are available at http://beast.community and
many users actively discuss BEAST usage and development in
the ‘beast-users’ GoogleGroup discussion group (http://groups.
google.com/group/beast-users). We also host an expanding
suite of R tools—designed for posterior analyses using BEAST
(https://github.com/beast-dev/RBeast).
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